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SUMMARY

A procedure for calculating three-dimensional, compressible laminar boundary-layer

flow on general fuselage shapes is described. The boundary-layer solutions can be obtained

in either nonorthogonal body-oriented coordinates or orthogonal streamline coordinates.

The numerical procedure is second-order accurate, efficient and independent of the cross-

flow velocity direction.

Numerical results are presented for several test cases, including a sharp cone, an el-

lipsoid of revolution, and a general aircraft fuselage at angle of attack. Comparisons are

made between numerical results obtained using nonorthogonal curvilinear body-oriented

coordinates and streamline coordinates. A user's manual with a detailed description of

computer programs and input is presented in Volume II.
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NOMENCLATURE

A,B

a,b

ao

C

C*

C

Cf_

C_y

Cp

Cp

E

F

A

G

g¢

H

hi, h2

i,j,k

stagnation point velocity gradients

major and minor semiaxis lengths of the ellipsoid of revolution

cylinder radius

p# / PelZe

B/A

P_/P

skin friction coefficient in the x-direction based on the edge condition,

Eq. (103a) or Eq. (104a)

skin friction coefficient in the y-direction based on the edge condition,

Eq. (103b) or Eq. (104b)

Pressure coefficient

specific heat

H/He, Eq. (48)

u/u,, Eq. (48)

F, Eq. (48)

v/V,e! or v_/V, el, Eq. (48) or Eq. (56)

G, Eq. (48) or Eq. (56)

total enthalpy

metric coefficients in the x and y coordinates, respectively.

indices in the x, y, and z direction, respectively

imax, jmax, kmax

number of boundary-layer grids in the x, y, and _ direction, respectively

K coefficient of thermal conductivity(= %#/Pr)

K1, K2 geodesic curvature of the curves y = const, and x = const., respectively,

Eq. (5) or (19)

K12,K21 parameters defined in Eq. (6) or (19)
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M

ml, .., m13

nl, n2, n3

p

Pr

r

R,O,¢

Reoo

q,_

8

T

t

tt , t) , W

UR, UO, U¢_

Mach number

coefficients, defined in rq. (54) or Eq. (60)

coefficients defined in Eq. (54) or Eq. (60)

pressure

Prandtl number (0.72)

radius measured from the X axes, Fig. 41

spherical polar coordinates, Fig. 41

free stream Reynolds Number, pooVooa/#oo

heat transfer at the wall, Eq. (108)

arc length measured along y = const lines.

temperature

b/a

velocity components in the x, y, and z directions

inviscid velocity components in the R, O, ¢ directions

uz,, uv,, uz, inviscid velocity components in the x _, y_ and z _ directions

u*,v*,w* velocity components in the x*,y*, and z* directions (near the stagnation point)

v_, Ov,/Oy

V total velocity, Eq. (7)

x, y, z body-oriented coordinates (Fig. 1) or streamline coordinates (Fig. 2)

x _, yt, z _ rectangular coordinates with the origin at the nose point (Fig. 41)

x*, y*, z* rectangular coordinates with the origin at the stagnation point, Fig. 37 or 38

X axial distance measured from the nose, see Fig. 1

a angle of attack

Ax, Ay, Ag=grid spacing in the x, y, f directions, respectively.

6

6*

boundary-layer thickness; (z) v/v,=00o5

displacement thickness, defined in Eq. (107)

small angle to locate the initial streamlines near the stagnation point, Fig. 41

ooo
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0

Oo

O_

/,/

p

subscript

ato

b

e

osp

8

st

t

tO

X

y

f

O0

transformed normal coordinate, Eq. (49)

angle between x and y coordinates

half cone angle, Fig. 8

angle between two coordinate systems, (x',y',z') and (x*,y*,z*), Fig. 37

molecular viscosity

g/p

density

azimuthal angle, 0 and r on the windward and leeward plane of symmetry,

respectively, see Fig. 1

adiabatic wall

body-oriented coordinates

edge of the boundary-layer

origin of spherical polar coordinates

stagnation point

streamline coordinates

total

wall

partial differentiation with respect to x

partial differentiation with respect to y

partial differentiation with respect to _"

free stream
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1. INTRODUCTION

Three-dimensional boundary-layer flows have been numerically studied for over three

decades. During this period the capability to obtain numerical solutions has advanced

from solving the similarity equations for relatively simple geometric shapes to the full

nonsimilar equationsfor morecomplexconfigurations. The earliest referenceablenumerical

work, to the authors knowledge,was that of Raetz [1] and Der and Raetz [2]. Theseearly

papers remain as important contributions in that they introduced the stability of the

mixed parabolic-hyperbolic system associatedwith the governingequations; i.e., the zone

of influence-dependenceprinciple. Blottner [3] presenteda state-of-the art review of three-

dimensional boundary-layer procedures that, with the exception of recently developed

numerical methods, remains current at the present date. More recent treatments of the

subject are presentedin References [4] and [5].

Over the past decade,the major emphasisin computational fluid mechanicshasfocused

on numerically solving the Euler and Navier-Stokesequationsfor increasingly more com-

plex aerodynamic shapes.In many instancesthe Navier-Stokesapproachis the only viable

procedure, i.e., for flows with strong interaction and separation. However, Navier-Stokes

solutionsare generallymuch moreexpensiveto obtain in terms of computer resourcesthan

boundary-layer procedures,and while capableof simulating the physics of complex flows

they are often of low resolution due to grid point restrictions. Furthermore, Navier-Stokes

solutions are not essential for many design and analysis procedures.

Renewed emphasis on drag reduction [6], laminar flow control [7], and transition pre-

diction [6] for complex flight configurations has clearly indicated the need to develop three-

dimensional boundary-layer software that can be routinely applied to aerospace vehicles at

a fraction of the cost associated with solutions obtained from the thin-layer Navier-Stokes

equations. Research at the NASA Langley Research Center has resulted in the develop-

ment and verification of two robust boundary-layer procedures for application to general

aerospace configurations. One of these, a fourth-order accurate procedure for solving the
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three-dimensional boundary-layer equationsfor aerospaceconfigurations, was recently re-

ported in Reference[8].

Theory and equationsfor the other, asecond-orderaccurate finite-differenceprocedure

independent of the sign of crossflowvelocity component for solving the three-dimensional,

compressible,laminar boundary-layer equations,arepresentedin the present report. The

software used to generate the numerical results has been optimized for fuselageshapes

having a plane of symmetry; however, the general procedure is not limited to fuselage

shapesand hasbeen applied to wing flows [9].

Results are presented for several test casesincluding a circular cone, an ellipsoid of

revolution and a general aircraft fuselageat angle of attack. The method is valid for

perfect gas flows from subsonic to hypersonic Mach numbers. Interaction between the

inviscid and viscous flow is not included. A detailed description of the software including

input/output for a fuselageshapeis presentedin volume II.



2. COORDINATE SYSTEM

Non-orthogonal curvilinear surfacecoordinates are the most general system for the

boundary-layer equations for complex aerospaceconfigurations (seeRef. [5].). Two co-

ordinate systemsare presentedin the present report: (1) a nonorthogonal body-oriented

coordinate system with cross-flowplanesperpendicular to the body axis (Fig. 1); and (2)

an orthogonal streamline coordinate system (Fig. 2).

Each of the two selectedcoordinate systemshas its particular advantagesand disad-

vantages. The nonorthogonal body-oriented system is optimum from the viewpoints of

grid generation and grid spacingcontrol. Also, in certain aspects the interface software

is simpler to apply since most inviscid solutions for bodies having a plane of symmetry

use one coordinate plane perpendicular to the body axis. However, the boundary-layer

equationsare singular at the noseof the body (X -- 0) and either a special transformation

suchas that used in Reference [10] or other proceduresmust be used to isolate this sin-

gular point. The streamline coordinate system is orthogonal with zerovaluesof cross-flow

velocity at the wall and edgeboundaries. The system's origin is located at the stagnation

point and is free of geometric singularities. But, the system is not independent of angle

of attack, and downstreamgrid line distribution and grid point spacing is difficult, if not

impossible, to control without an adaptive grid procedure such as that used in Ref. [11].

The primary interest in the streamline coordinate system in the present paper is in the

eventual application of the softwarepackageto transition prediction; i.e., the output along

the streamlineswill serveas input for transition prediction procedures [12].
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3. THREE-DIMENSIONAL BOUNDARY-LAYER EQUATIONS

3.1 Body-Oriented Coordinate System

The governing equations (dimensional) for the body-oriented coordinate system are as

follows:

continuity equation

a (puh2sinO) --_ _(flVhl 3_rt_) --_ _-_(pwhlh2sin_ ) = 0Ox
(1)

x-momentum equation

pu au pv au Ou

h--1cg--x+ h---2cg---y+ PW_z - Pu'ZK' cot0 + pv_K2cscO + puvK,2

csc 2 00p cot 0 csc 00p 0 Ou
+ +

hi ax h_ i)y -ffzz'tt a_z j
(2)

y-momentum equation

pu cgv pv Ov Ov

h-'-lO'--x+ h-_ a--y + PW-_z - pv'g2cotO + pu'g, csc0 + puvg,1

cot 0 csc 00p csc 2 00p + __tO Ov
hi Ox h20y O_z _tt O_z'

(3)

energy equation

pu OH pv cgH OH 0 { tt OH 1 0 V 2 }h--T 0-%- + h--_a---y-+ '_' az - b-_ F_ _ + _'(_ - _)_(T ) (4)

The metric coefficients hi and h2 are functions of x and y. The parameters K1 and Ks are

geodesic curvatures of the curves y = const and x = const respectively, where

K1 - hlh2 sin 0 _xx ay hlh2 sin 0 (hi cos 0) i)h2-- ' - a-; (5)

and

1 (1 + cos 2 2 cos 0
K12 hlh2 sin s 0 O)-_y

1 { (1 + cos20)_x2 - 2 cos O_y 1 }K21 = hlh2 sin 2 0
(6)



V is the total velocity and is given by

V : (u 2 + v 2 + 2uv cos 0) 1/2 (7)

The boundary conditions are

z = 6, u = u,(x,y), v = v,(x,y), H = He (S.a)

OH

z=0, u=v=0, w=w,o, H=H_o or (--0_z)_--0 (S.b)

At the edge of the boundary-layer, the pressure gradients are related to the inviscid veloc-

ities by the following equations:

ue Oue ve OUe /P* ----hlOx + h20y u_Kx cot 0 + v_K2 csc 0 + uev,K12

csc 00p cot O csc 00p
- +

hi Ox h2 Oy

{ u, Ov_ v_ Ove 'K u_K1 0 + u_v_K_l }P_ h----10---x+ h20y ve 2 cot 8 + csc

cot 0 csc 00p csc 2 00p

hi 0x h2 0y

(9.a)

0.b)

The perfect gas equation of state and Sutherland's viscosity are used to close the equation

set.

For the windward and leeward plane of symmetry v and K1 csc 0 are zero and 0 is

generally _r/2 ( 0 is retained for the general system.). Consequently, each term in the y-

momentum equation vanishes. However, partial differentiation of Eq. (3) with respect to

y yields an equation for Ov/Oy. After differentiation and using the appropriate symmetry

conditions (Ou/Oy = Ow/Oy = 02v/Oy _ = OH/Oy = Ohl/Oy = Oh2/Oy = 0) along with

Eq. (9), the governing equations for the plane of symmetry become

continuity equation

--_x(pUh_sinO) + pvuh x sin0 + (pwhlh2sin O) = 0
(lo)



x-momentum equation

0 Ou

u_Kl cotO) + _z (#-_z)

y-momentum equation

pu 0% 0% p v2 PU2 0 (K1 csc O)
h'--_O--'-x+ PW-'-_z + _ u + puvvK21 + Oy

2 O 0%_e OUile ?)ye

: Pc(h, Ox + _ + u,vu,K2x)+ p,u_O(Ko_SCO) + --_z(tt-_z)

energy equation

(11)

(12)

puOH OH 0 { l_ OH 1 0 V 2 }h'---_O"'_ + pw Oz - Oz Pr Oz + #(1 - _r)_zz(_- ) (13)

where vu = Ov/Oy, rue = Ove/Oy and V = u along these lines.

The boundary conditions for the plane of symmetry are

z = 6, u = ue(x,y), v u = vue, H = He (14.a)

OH
z=O, u=v=vu=O , w=w_, H=H_ or (-w:-)_=O (14.b)

oy

3.2 Streamline Coordinate System

The streamline coordinate system is orthogonal; consequently, with the exception of

certain metric coefficients and the boundary conditions, the governing equations can be

obtained directly by equating 0 = 1r/2 in Eqs. (1)-(4) and Eqs. (10)-(13), i.e.,

continuity equation

x-momentum equation

pu Ou pv Ou Ou 10p 0 Ou

+ h--_O---y+ PW-_z + pv'K_ + puvK12 - + w--(#w--) (16)h---_O---x hi Ox GZ OZ

6



y-momentum equation

pu Ov pv Ov

hi cgx h20y

Ov 1 cop 0 coy

+ pW_z + pu2K1 + puvK21 - + w'-(#w-')h2 Oy CI Z CI Z

energy equation

pu OH pv OH OH c_ _ # aH

h'-'_ 0---_ + h'--2i)--'-y+ pw c9z - i) z I P r cgz

The parameters K1, K2, K12, and K:z are given by

10h_

K1 - hlh2 Oy ' K2 -

1 Oh1
t(12 -- - - K1,

hlh_ roy

1 0 V 2 }+ tt(1 - _r) _zz (-_-)

V is the total velocity and is given by

(17)

(18)

1 Oh2 (19.a)
hlh2 0x

1 Oh2
//'21 - -- -g2 (19.b)

hzh2 c_x

v : (u' + (20)

The boundary conditions are

z = 5, u = u_(x,y), v = O, H = He (21.a)

OH

z=0, u=v=0, w=w_, H=H_ or (-_--z)_=0 (21.b)

At the edge of the boundary-layer in this coordinate system, the pressure gradients are

related to the inviscid velocities by the following equations:

ue Oue 1 Op

Pe_Ox = -h-_ 0-_ (22.a)

peu2e Ohl 1 i)p- (22.b)
hzh2 Oy h2 Oy

In the streamline coordinate system for the boundary-layer, the metric coefficient hz is

defined as

hz = --
Ue

The governing equations for the plane of symmetry become

(23)

continuity equation

c3--_(puh2) + pvvh , + (pwh, h,)
=0 (24)



x-momentum equation

pu Ou Ou u, Oue 0 Ou

h'---_O---x+ PW-_z = p" h-'_ O'--'x+ _z (U-_z ) (25)

y-momentum equation

pu Ov u Ov v

_--7a--;+ P_-_z
b OK1

+ P v 2 + puvvK2] + pu 2
h2 u Oy

2 OK1 0 Ors,

- p,_,--_-y+ --(u---)Oz " Oz "

energy equation

(26)

puaH OH a {#OH 1) 0 V 2 } (27)h---1O---x+ pw Oz - O-z Pr -_z + _u(1 - Pr -_z (T )

where v v = Ov/Oy and V = u along these lines.

The boundary conditions for the plane of symmetry are

z = 6, u = u_(x,y), v u = O, H = H_ (28.a)

aH
z=0, u=v=vv=O, w=w_,, H=H_ or (-g-:-)_o=0 (28.b)

uy

3.3 Three-Dimensional Stagnation Point

To obtain the boundary-layer solutions at the three-dimensional stagnation point, the

governing equations for three-dimensional laminar compressible flows in Cartesian coor-

dinates are required and can be obtained by setting hi = 1, h2 -- 1, and 0 = 7r/2 in

Eqs. (1)-(4). Superscript * is used to distinguish this coordinate system from the other

coordinate system.

continuity equation

x-momentum equation

O O , O ,
(pu*)+ ___..(p_) + -_:-:_..(pw) = o (29)

Ox* oy- oz"

, Ou* Ou* Ou* Op 0 Ou* (30)
pu -_Tx, + pv*-_:y, + PW* a--z, - ox* + -_-:z*(U-Oz-:z* )

8



y-momentum equation

, Ov* Ov* , Ov* Op

pu _:_. + pv*-_:y.+ pw _ - Oy*

energy equation

OH , OH , OH

pu*Ox----:+ pv _ + pw _ -

where

+ _z.(,_z.) (31)

The boundary conditions are

0 { g i)H --1) 0 ( V*2`} (32)Oz* PrOz* +g(1 - Pr _ -2-)

V* = (u'2+v*2) 1/2 (33)

z* = 6, u* = u*_(x,y), v* = v:(x*,y'), H = H, (34.a)

OH

z*=0, u*=v*=0, w*=w,_,* H=Hw or (_-_-z.),_ =0 (34.b)

3.4 Sharp Cone

The boundary-layer solutions for the flow on the sharp cone are used for generating

initial profiles near the nose tip for sharp-nose fuselage shapes. The governing equations

for a sharp cone, written in terms of x, the coordinate along a cone generator, y, the

cone azimuthal angle and z, the coordinate normal to the cone surface can be obtained by

substituting hi : 1, h2 = r = xsin0c, and 0 = r/2

where 0, is the half cone angle:

continuity equation

_---_(puxsinO_) + ff---_(pv)

x-momentum equation

Ou

pu-_x +

from Eqs. (1)-(4) and Eq. (10)-(13)

0

+ _(pwxsin0o) : o (35)

pv Ou Ou p v2 0 Ou
xsin O¢Oy + PW_z - x = -_z (tt-_z ) (36)



y-momentum equation

COy pv Ov av puv 1 Op 0 Ov

pu_ + xsinO, 0y + pw_ + n = (37)= =sin oo ou + _(u_)

energy equation

OH #v OH pwOH CO_#COH 1 0 V2[
PU-_x + xsin0¢ Oy + Oz -- O-z ( P'r -_z + _(1 - _r)_zz(T ) J (38)

where

v = (.' + v')'/2 (39)

The boundary conditions are

z = 6, u = u,(y), v = v,(y), H = H_ (40.a)

aH

z=O, u=v=O, w=w_, H=H,_ or (-_-z)_=0 (40.b)

The conical inviscid flow assumption has been made in the above equations, i.e., all gradi-

ents of the inviscid variables in the x direction are assumed to be zero.

At the edge of the boundary-layer, the pressure gradient in the y-direction (ap/ay) is

related to the inviscid velocities by the following equation:

p,ve Ov, 1 COp
+p,u,v,- (41)

sin Oe ay sin 0 ay

Using the conical inviscid flow assumption, the following equation can be obtained from

Eq. (9.a).

1 Oue
--v, (42)

sin 0¢ Oy

The governing equations for the plane of symmetry become

continuity equation

0
_-_(puxsin 0¢)-t- pv v + L-_(pwxsin Oc) : 0

CY;5
(43)

x-momentum equation

Ou Ou cO cOu

PU-_x + PW-_z = "_z (U _z ) (44)

10



y-momentum equation

Ovv _z p .,9v)2 puv_P_'-U_+ pw + =_?nOo(_ + - - P'(x "_"z sTnO¢

energy equation

OH OH

pu-ff_ x + pw Oz

0 Ovu
_ + _'_') + _(u-b-;z )

X -

-- Oz /Tr _zz q- #(1 - _r)_zz ( )

where v v = Ov/Oy, and V = u along these lines.

The boundary conditions for the plane of symmetry are

z=,_, u=u,(y), v_=vv,, H=H,

z=0, u=v=vu=O, w=w,o, H=H,_ or (OH)-SV =0

(45)

(46)

(47.a)

(47.b)
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4. TRANSFORMED EQUATIONS

The boundaxy-layerequationsare transformed to the coordinate system usedby Cebeci

et al. [13] which removes the singularity at x -- 0 and allows coupled solution of the

continuity and momentum equations.

The following definitions are introduced

F= f_ = u/u,, G = g¢ = v/Vr,I,

together with the transformation

X = X, y ----y,

where

E = H/He (48)

_'= y ttes so
(49)

fo Zs = hldx (50)

In the present report, Vref is chosen to be V_o except for the three-dimensional stagnation

point equations, where it is taken to be re.

4.1 Body-oriented coordinate system

Using the transformation given in Eq. (49) and the relations given by Eq.

governing Eqs. (1)-(4) axe transformed to the following form:

x-momentum equation

f = f_ (51.a)

(CF_)_ + rnlfF¢ -- m2F 2 - mHFG + m6Fcg - msG 2 + mile -- m13F¢

= mlo(FFz - F, fz) 4- rnT(aF v - Fcgv) (51.b)

y-momentum equation

a=g (52.a)

(CG¢)_ + rnsfG¢ - m3G 2 - m4FG + m6Gcg - ragE 2 -4-ml2c -- rn13G¢

= m,o(FG, - G:f,) + mT(GG,, - Gcgv) (52.b)

12
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energy equation

(nlE,)¢ ÷ nsE: + (ns)_ - mlaE¢ : mlo(FE= - E:f_:) + m.l(GE v - E¢gu) (53)

The coefficients ml to mls and nl to na are as follows:

ml = _ l + hxu_ Ox
0 {hssinopf Th-; m}

-4- hlhs sin 0 pvrfiT_ c3---x

s aut
- sK1 cot 8

ms- hlu_ Ox

KsV,_! sms = -s cot 0 +
u_ h2ue

s OV,_ I
m4 = 8K21 ÷

hi V,_! Ox

sV,. I Ou_ V. I

m5- "h2u_ Oy + sKis u_

o{
m6 = hlhs sin Ov/p,_,u,s _y

sV,_I

m7- h2ue

O Y.I)s
ms=sKscsc (

mo = sKI csc 0 Uv-_!

7T/'10 = _1

1 cOu,mll = 8 blue Ox

8 [ Ue Ore

m12 -- ueVre! I hi Ox

_
m13 PtUe V _e

C

ns : mlf -4- meg

n 3 -- CU_He(1-_r)1 {FF¢

OV.,f

Oy

v/p_#_u_s hx sin 0 V_I }
Ue

Ve OUt
+

hsu_ Oy

t)e OUe
---- 3 t-

h2 0y

The boundary conditions are

cot OK, + csc OKs s ÷ Kls__e

cot OKsv_ + csc OKlU_ + Kslu_v_ I
)

V_f s V_f
+ GG¢(-_) ÷ --cos0(FG¢u_ ÷ FcG) }

q=O: f =F=g=G=O, E'=O or E=Ew

13

(54.a)

(54.b)

(54.c)

(54.d)

(54.e)

(54.f)

(54.g)

(54.h)

(54.i)

(54.j)

(54.k)

(54.1)

(54.m)

(54.n)

(54.0)

(54.p)

(55.a)



= _e : F =- I, G = velV,.ef, E = I (55.b)

The governing equations for the plane of symmetry are transformed by defining

F = it = ulue, G = g¢ = vvlV,.el, E = H/He (56)

x-momentum equation

F = f: (57.a)

(CFt) t + m,fF_ - rn2F 2 + rn6Ftg + m,lc -m13F: = mto(FFz - F¢f_) (57.b)

y-momentum equation

a = at

(CG_)¢ + rnlfG t - rn3G 2 - rn4FG + m6Gtg - rngF 2 + rn12c - mlaG_

= m,o(Faz - atf,) (58.5)

energy equation

(nlE¢)t + n2Et + (n3)t - rn13E¢ = mlo(FE. - Etf_) (59)

The coefficients rnl,rn2, rn4, rnlo, rnla, nl,n2 are the same as in Eq. (54). The remaining

coefficients are defined as follows:

sV, e!
m 3 --

h2ue

Cu_ . 1

na -- -_ (1 - --_rrr)FFt

2
Uye

+ u-_ + K,1%e)

(60.a)

(60.b)

(6o.c)

(60.d)

(60e)

(60.f)
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The boundary conditions are

_=0: f=F=g=G=O, E'=0 or E=E,_ (61.a)

v Y_.2_e

=_: F=l, G= Vr_f' E=I (61.b)

4.2 Streamline Coordinate System

The transformed equations have the same form as Eq. (51)-(53) off the plane of sym-

metry. The coeffcients ml to m13 and r/,1 to ha, obtained by setting 8 = 7r/2, Vr,! = Voo,

hi -- u,/Voo, and ve -- 0 from the Eq. (54), are as follows:

ml = _ 1 + hlu, Ox + hlh, pv/T-¢-_¢_Ox {h2 PV_--_-_e} (62.a)

rn_ = s (9u, (62.b)
hlu, Ox

m3 : 0 (62.c)

m4 = sg21 = -sg2 (62.d)

,-,_= 0 (62.e)

, o{rn6 = hlh,_ c3y _ ht (62.f)

rn7- sVoo (62.g)
h2ue

(62.h)

u, (62.i)
rr_ = s KI _'-_

,.q

m,0 = -- (62.j)
hi

s Ou, (62.k)
mn- hlUe c_x

Ue
rnl2 = sK1-- (62.1)

voo

_ (pw)w ,/PeuU_yS (62.m)
m13 peue V lze

C

,,,,= _ (62.n)

n2 -- mlf + m6g (62.0)

ha--CU_(l-1H, -_r ) (FF¢ + GG_(_)'} (62.p)
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The boundary conditions are

t'=0: f -- F = g = G = O, E'--0 or E -- Ew (63.a)

=¢e: F=I, G=0, E--1 (63.b)

The transformed equations for the plane of symmetry for this coordinate system has

the same form as Eq. (57)-(59). The coefficients ml, m2, rn4, mlo, rnla, nl,n 2 are the same

as in Eq. (62). The remaining coefficients are defined as follows:

sV=
ms- h2u, (64.a)

rn6 : ms (64.b)

sue 8K1
m9- Voo Oy (64.c)

rnll- hlue Ox (64.d)

aK1
rnl:- Voo By (64.e)

Cu_ (1- _---_)FF¢ (64.f)
n3--

The boundary conditions are

f=F---g--G=O, Et-O or E=E,_ (65.a)

F=l, G=O, E-1 (65.b)
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4.3 Three-Dimensional Stagnation Point

The governing equations for three-dimensional laminar compressible flows in rectangu-

lar coordinates, Eq. (29)-(32), are transformed using Eq. (49) and Howarth's [14] inviscid

velocity components near the stagnation point. For s approaching zero, the following sim-

ilarity (ordinary differential) equations are obtained.

x-momentum equation

y-momentum equation

energy equation

(c f")' + f F - (f,)2 + B f,,g + p: = o
P

B AB__ B Pe(Ca")'+fa"- (g')_+ 9"a+x_ -o

(66)

(67)

C ,-, B-p--_rE ) + (f + g)E' = 0 (68)

The equations above are based on the assumptions that the outer flow is irrotational and

that the inviscid velocity components near the stagnation point can be approximated by

u,*= Ax* , ve* = By* (69)

Equations (66)-(68) can be obtained from Eqs. (51)-(54) by substituting u; = Ax*, Vre! =

V_ = By*, hz = 1, h2 = 1, 8 = 1r/2, and taking limit as s approaching to zero. The primes

denote ordinary differentiation with respect to _, i.e.,

- - '- - , and E=-- (70)f, df u* dg v* H
' g d_ Hed_ u; v;

The boundary conditions are

f=0: /= /'=g----g'=O, E'=0 or E=E,o (71.a)

f=f,.: /'=1, g'=l, E--1 (71.b)
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4.4 Sharp Cone

Using Eq. (49), the boundary-layer equations off the lines of symmetry are transformed

to (Here, V,_! -- V_ ):

x-momentum equation

(p_,,)3 V_v_ Voo a_
(Cf¢¢)¢ + _ff¢¢ -_ f_g¢ + (2sinO_u_ p_#_

(pw),_ ptu,s Voo Of¢ Og

-_"_e f¢¢ -- (g¢p,u.. sin0cu, _y - f¢¢,.u )

lv.Voo Voo 2 2

2 ,q )f.9 + (-C) 9,

(72)

y-momentum equation

3

(0g¢¢)¢ + _fg¢¢

_e C_?Je

+(sin O_u,Voo Oy

1 Or, _. ( Voo o-_(P'#') 1 v,_ff)g¢,gsin O_u_ -_y g¢ - fCg¢ + 2 sin Ocu, p_#, 2

-- _1--g¢¢ - si_-_cu (g¢ - g¢¢ )+_)p p._. v ,. W (73)

energy quation

(P--rr E¢)' + 2f + (2sin0cu, p,lz, 2 -_ )g E¢ p,u, V_-_-_ ¢

{' Voo2 } Voo OE Og,,c - 1)c(/_/. + (-C) 9¢9.) - (9¢-E-_- E,+ _--_(1 ¢ sin O,u, O-y)
(74)

where f¢ = Of/Of = ulu,, g¢ = Og/Og = v/Voo, and E = H/H,

The boundary conditions are

=0: f = f¢ = g = g¢ =0, E¢ =0 or E = E,_

f=_'.: /¢=1, g¢=vo¢' E=I

The boundary-layer equations on the lines of symmetry become

x-momentum equation

3 V_
(CA¢)¢ + _f f¢¢ + sinO_u f¢¢g = 0

y-momentum equation

3

(0g¢¢)¢ + _f g¢¢ : - fcg¢ + O_u g¢¢g + + --u. sin Oc'g¢ sin "u.Voo sin 0¢ Voo" p

18

=0

(75.a)

(75.b)

(76)

(77)



energy equation

where f¢ = i)f /i)_ = u/u,, g¢ -- i)g/c3g = vulVa, and E = H/H,

The boundary conditions are

= 0 (Ts)

_=0: f=f_ =g=g¢ =0, E¢ =0 or E=E,o (79.a)

vv' E = 1 (79.5)¢=_,: f_=l, g_-voo'

Equations (72)-(74), and (76)-(78) can be obtained from the Eqs. (51)-(54) and Eqs. (57)-

(60) by substuting hi = 1, s = x, h2 = xsin0_, O = r/2, Vre] = Voo and with the conical

inviscid flow assumption, i.e., i)ue/Ox = O, Op/Ox = O, c_p_/Ox = O, _)_/Ox = O.
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5. NUMERICAL METHOD

5.1 Blottner's Iterative Method

The transformed stagnation point equation, Eq. (66)-(68), the governing equations off

the lines of symmetry on the sharp cone, Eq. (72)-(74), and the equations along the lines

of symmetry on the cone, Eq. (76)-(78), are solved using Blottner's iterative method [15].

All the equations listed above can be expressed in the following form:

z-momentum equation

F = f¢ (S0.a)

(CF¢)¢ + rnlfF¢ - m2F 2 - msFG + meF¢g - msG 2 + mnc - rnxsF¢ = m,(GF v -Fcgv)

(80.b)

y-momentum equation

rnsG 2 - m4FG + meGcg - mgF 2 + m12c - mlsG_

(81.a)

= mT(GG -

(81.b)

energy equation

(nlE_)_ + n2E¢ + (ns), - rnIsE_ = m,(GE_ - E_g_) (82)

The above equations are linearized using Newton-Rhapson's linearization technique [3].

The f-derivative terms are discretized using a central finite-difference scheme. To solve the

governing equations off the line of symmetry of the cone (Eq. (72)-(74)), an implicit

marching procedure ( Ref. [I5 D is used. Here, for the y-derivative term, an implicit second

order backward finite-difference is used.

For abbreviation, finite-difference operators are defined as

6_Fk = Fk+l- Fk-1 k = 2, 3, .., kmax - 1 (83.a)
m_'k + mfk-1
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2 {C Fk+,- F_A_(C_A_F_)= :'_ + Aft_, _+'' 7,_

6,F; -- F_- _;_, if j=_
Aye._1

_F,.=

Fk --Fk-, }c,,_,, :a_,_-q (83.b)

(83.c)

(ay__,),(ayj_, + ayj_,)- ay__,(ay__, + ay;_,),
ifj > 2 (83.d)

1
where Ck+x/2 = -_(Ck + Ck+x), Ark = qk+, - fk, Ayj = Yi+x - Yi, and j and k represent the

y and f directions, respectively. The overlined quantity is the converged solution at the

previous step (j - 1 or j - 2).

The finite-difference equations for the Eq. (80)-(82) can be written as follows:

x-momentum equation

Aql'-' (F_ + Fk_,) = 0 (84.a)
fk--fk-x 2

At(Ck AtFk ) + rn,(yj,6¢Fk + 6¢F_,I_, - f k6tFi, ) - rn,(2-f F_, - F_k) - rns('d_,Fk

+F"-kG_ .... rkGj,) + rn6(_kScFk + 5_'-f kgk _'kS¢'Pk) rns(2-GGj, --'Gk) + rnn'gk -- rnxar_

= m,(U_,6vF_ + 6v-F_,Gk - U_,6u'P, - 6:-F_,6_,gk - 6¢FaSuy_, + 6;F_6vy_) (84.b)

y-momentum equation

a_-,,_,(a,,+ a,,_,)= o (8_.a)
g_ -- g_- x 2

energy equation

A¢(n,.k AcE_) + n2._ 6¢E_ + 5_n3.k - rn,sE: = rnT(G,6_Ej - 6¢E_,Sugi) (86)

where the overlined quantities are evaluated from the previous iteration. The energy

equation does not require linearization since it is solved after the momentum equations.
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The finite-difference momentum equations, Eq.

2x2 block tridiagonal form as

where

(84) and Eq.

i_k-1 (H k
h_, = hk-1 + _ + H_,-I)

--AkHk-1 + BkHk - CkHk+l + akhk = Dk

(85), are rearranged in

(87.a)

(87.b)

Hk=[ Fk]Gk

Ak, Bk, Ck, ak are 2x2 matrices, and Dk is a vector.

These equations are solved by the Davis Modified Tridiagonal Algorithm (See Appendix

A). The finite-difference energy equation, Eq. (86), is arranged into the linear tridiagonal

matrix equation form as

BkEk-1 + DkEk + Ai, Ek+l = Ck (88)

where Ak, Bk, Ck, and Dk are scalars.

This equation is solved using the Thomas Algorithm. The momentum equations and the

energy equation are solved iteratively in a uncoupled manner until the converged solution

is obtained. The converged solution is usually obtained within five iterations.

5.2 Matsuno's Finite Difference Method

5.2.1 Formulation of Finite Difference Equations

Matsuno's finite-difference method [16] is used to march the solution downstream

from the initial data plane (velocity and temperature profiles specified at initial data

plane; see Appendices B and C for detail). The method is a modification of the predictor-

corrector form of the Crank-Nicolson scheme, which was originally suggested by Douglas

and Jones [17] to apply to the three-dimensional boundary-layer problem. This scheme

is half implicit in the t" direction, explicit in the y-direction, noniterative and has second
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order of accuracy [16]. Also, the scheme is highly vectorizable for computation because

the crosswise derivatives are formed independent of the the sign of the crossflow velocity

component.

Again, for abbreviation, finite-difference operators are now defined as

Fh÷l-= (Sg.a)

' ' tF;'k- F_'_-I 89.b), , 2 ,
A¢(C}'kAcF;'k) = Af, + A_,-1 / "-'i'*+1/2 Af, -C}'k-x/' A_k_-I

• (F_+i,k i,k) + (AYJ')'(F_,k i-,,k) (89.c)_vF_,k= (AYi-1) 2 _ _F _ _ _F _
AyjAyi-I(Ay i + Ayj-1)

where = i(Cj, k + C_,k+l) , and *,3, and k represents the x,y, and z directions,C_,k:t:l/2 1 i i • •

respectively.

Figure 3 shows the finite-difference molecule for the scheme. To formulate the finite-

difference equations for the predictor step, the nonderivative terms are given as the value

at the previous step (i-th step), the x-derivative is obtained by backward differencing,

the first derivatives of y and _" are obtained by using central differencing at the previous

step explicitly, and the second derivative of q is obtained using central differencing at the

predictor step implicitly. For the corrector step, the nonderivative terms are given as the

predictor values, the x-derivative is obtained by backward differencing, the first derivatives

of y and f are obtained using central differences at the predictor step (i + 1/2) explicitly,

and the second derivative of _ is obtained by averaging the i-th step and (i + 1)-th step.

The finite-difference equations which approximate Eq. (51) through (53) are formulated

as follows:

Predictor

x-momentum equation

i+l/2 __ ¢i+1/2
,k Jj,k-1

A_k-I [_i+1/2 i?i+I/2_
2 t'i'k +"j,k-_ J : 0

(90.a)
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A,(cj,__,F,.';1/')+m,Sh_,_,_- m,CFh)'- -_ _._c_._

_i+l/1 i_i ¢i+1/1 fi

./

y-momentum equation

g.,+,i, ,+,/, A__,,__,+I/,__,+1/,_ (91.a)- gj,k-I 2 t'-'j,k + "-'£_-ls = 0

A_(Cj, k ^ mi+112_ i i 1 i"<"i,' ' + ml f_,, fiGS,, - m,(Gi,,) - m4 F;,t Gi,,

g-2_i+I12 __ Gi #.{+l/i _ fi
r _n,i "-" f,lc f,k _ ,rui J i,} f,k _ " i i i

= ml°tri'i -A-xj2 - w'_S'k -A-xJ2 s + m7(a},t f, aS,t - 6<Gi,i 6,gs,a) (91.b)

energy equation

i A _.i+1/2_ i i i i
A,(nis,i "",:-'i,t , + nis,k 6<E;,k + _<nss,k - rni'_<E;, k

/_i+112 E i t-i+l/2 _ fi

Corrector

x-momentum equation

i+l -- f_-#-I a_t-1 rlgii+l 1_+1
,k i,k-1 2 t"i,k _- i,k-ll = 0

ri+l/2 ._ ]_-_/+112
fC '+11, At (i_j'+l + P/"t) + m, j/,t "_<i,i

A_ i. i,t 2

r r, i+l/2%2
ms _ i,k i,k

(93.a)

K,i + i k"i

i+112 I; I? i+lli ¢,,-_i+112_2 i+112 e __i+112 rT_i+II2 "'i,k -- " i,k

+ms gi,k "f"i,k -- l'?'$8tt'T3",k ] "_ ITill e$', k -- mlso¢_i'k : rnl°tX_i't Axi

f_+l f_,k) ,.--.i+i/' X _i+'/' ,_ _i+1/'. i+1/2, (93.b)___ _i+I12 i,k -- _- rnTt_i,t ,,u_,i,t -- "t'i,} °ugi,k )
*i,_ Axi

y-momentum equation

_/+1 _i+1 A_k-1 (_-_1 .jr_ j,}-l] : O_+1 _ (o4.a)
Yi,k -- Yi,i-1 2
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I. J

f_i+l _',k
i+1/2 _ Gi+1/2 tr:_i+l/212 i+l/t2 c f.vi+l/'2 _ (1_i+1/2 "Jj,k --

+me gy, t _ j,k -- rr_Lrj,k ) + rex2 cj, k -- m13ocLrj,t = H_lOk_'j,k Ax i

¢i+ 1 fi

/._i+X/2./j,k -- j,k_ /.-_i+1/2 _ Gi+l[2 _a_,_l/2c i+1/2. (94.b)
-v_._j,_ • _-xi 'J + mT(_-j,k _ £_ - %gj,_ )

energy equation

i+112 (Ti?i+l Ei I i+1/2 6 E i+1/2 ,. i+1/2 _ _ _ _.,i+1/2kzJj,k -_- j,k) -_- n2j,k ¢ j,/c -_- 0s'n3j,k Hr13v_j,k
A_, _ nlj,k A¢ 2

J

._+1 i fi+l fi t,,.-,,i+1/2 _ ._i+1/2 ._i+1/2 i+1/2- 6 E +1/2 - ;,k )(95)
= ml°t/_i'k Axi ; i,_ Axi

where the superscripts i, i+ 1/2, and i+ 1 denote the i-th step, predictor step, and corrector

step, respectively.

Both the predictor and corrector finite-difference momentum equations (Eqs. 90, 91,

93, 94) are rearranged in the 2x2 block tridiagonal form as Eq. (87) and solved by Davis

Modified Tridiagonal Algorithm (See Appendix A). Each (predictor and corrector) finite-

difference energy equation (Eqs. 92, 95) is arranged into the same linear tridiagonal matrix

equation form as Eq. (88) and solved using the Thomas algorithm. Although there is cou-

pling between the momentum equations and the energy equation, these equations can be

solved in an uncoupled manner due to the quasi-linearization involved in the predictor and

corrector scheme.

5.2.2 Stability

The mathematical character of the three-dimensional boundary-layer equations was

shown by Raetz [1] to be hyperbolic in the x - y plane, resulting in the formulation of the

zone of influence and dependence principle. The influence of the solution at any point is

transferred by diffusion to all points on the line normal to the surface and by convection

downstream along the streamline through that point. The zone of dependence for a certain

point is a wedge shaped region facing upstream bounded by two characteristic surfaces each
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containing the outermost streamlines ( one is the inviscid streamline and the other is the

limiting streamline ) passingthrough the point.

The zone of dependencedesignatesthe minimum amount of initial data to be sup-

plied; in other words, the differencemoleculemust include the information in the zone of

dependence.Becauseof this principle, the standard finite-difference methods for solving

the three-dimensional boundary-layer equations using the numerical marching procedure

in the x- and y-direction must be modified whenever the sign of the cross-flow reverses.

More exactly, when the direction of any streamline in the boundary-layer is opposite to

the numerical marching direction, a modified method must be used. The finite-difference

methods used by Shevelev [18], Dwyer and Sanders [19], Mclean [20], and the Box scheme

used by Cebeci et al. [13] are examples of methods which require modification for the region

where the crossflow direction is opposite to the numerical marching direction. The Zig-zag

scheme used by Krause [21], Zig-zag Box scheme, and Characteristic Box scheme [10] are

examples of modifications used in this region for standard marching procedures.

The unique character of Matsuno's scheme is that the crosswise (y) derivatives are

formed independent of the sign of the crosswise velocity component. The crosswise deriva-

tives are approximated by explicit, three-point central differencing at the previous step,

which yields stability independent of the crossflow direction. Therefore, Matsuno's finite-

difference molecule does not depend on the crossflow direction.

The zone of dependence principle requires

u
-- > 0 and
t_ e

I h=hl/XyA=uvI < 1.0 (96)

Matsuno's finite-difference scheme is conditionally stable [16], and the stability condition

gives the same constraint as that required by the zone of dependence principle.

5.2.3 Accuracy

The accuracy of the present procedure is established by comparing numerical results

for several test problems with previously published results obtained by other investigators.
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Case 1. Flat plate with attached cylinder

Three-dimensional incompressible laminar flow past a flat plate with an attached cylin-

der (Fig. 4) was calculated using Cartesian coordinates (hi = h2 = 1). This flow has

been computed by several investigators. Fillo and Burbank [22] used the Crank-Nicolson

method, Cebeci [23] used the Box scheme, and Iyer [8] used fourth-order scheme. For this

flow, the inviscid velocity distribution is given by [23]

ue  y2/xx01 }a0[Cx_x0)2+ y2]_ (97.a)

y(x- xo)
-2v_a0[(_ _ _0)2+ y2]_ (97.b)

where ao is the cylinder radius, and x0 is distance of the cylinder axis from the leading

edge. To compare the numerical results with those obtained by other investigators, the

conditions Voo = 3050crn/sec, ao = 6.1cm, and Xo = 45.7crn are chosen. The grid spacings

are Ax = 0.61crn, ay = 0.61cm, and A_- = 0.2 with _, = 8.0. The results ((f¢_)_) are

shown in Table 1. The values presented in Ref. [23] have been multiplied by 1/V_ to

properly account for differences in the transformation. The numerical results from the

present method are in good agreement with those computed by Fillo and Burbank [22],

by Cebeci [23], and by Iyer [8] as shown in Table 1.

Table 1. Comparison of the values of (f_)_

y=0 cm

x(cm) Fillo and Burbank [22] Cebeci [23] Iyer [8] Present

(C-N scheme) (Box Scheme) (Matsuno)

0.00 0.3321 0.3319 0.3321 0.3323*

2.44 0.3292 0.3289 0.3289 0.3293

4.88 0.3251 0.3250 0.3248 0.3253

7.32 0.3199 0.3198 0.3195 0.3202

27



9.76 0.3130 0.3130 0.3126 0.3133

12.20 0.3035 0.3036 0.3031 0.3039

14.64 0.2903 0.2907 0.2900 0.2908

17.08 0.2715 0.2722 0.2713 0.2721

y ----3.05 cm

0.00 0.3321 0.3319 0.3321 0.3323 *

2.44 0.3292 0.3289 0.3290 0.3294

4.88 0.3254 0.3251 0.3251 0.3256

7.32 0.3203 0.3202 0.3200 0.3206

9.76 0.3137 0.3136 0.3134 0.3140

12.20 0.3048 0.3047 0.3045 0.3052

14.64 0.2925 0.2925 0.2923 0.2930

17.08 0.2751 0.2751 0.2752 0.2758

y = 6.10 cm

0.00 0.3321 0.3319 0.3321 0.3323 *

2.44 0.3295 0.3292 0.3293 0.3296

4.88 0.3260 0.3257 0.3257 0.3262

7.32 0.3216 0.3213 0.3213 0.3218

9.76 0.3159 0.3156 0.3156 0.3162

12.20 0.3084 0.3082 0.3082 0.3088

14.64 0.2985 0.2985 0.2984 0.2990

17.08 0.2851 0.2853 0.2854 0.2857

where * is obtained using Blottner's iterative method.
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Case 2. Ellipsoid of Revolution

The three-dimensional incompressible laminar flow over an ellipsoid of revolution with

ellipticity ratio 4 (a =lm, b = 0.25m) was calculated for 0 and 6 degrees angle of attack

using body-oriented coordinates and the analytical potential solution. This flow has been

computed by Wang [24], Hirsh and Cebeci [25], and Cebeci and Su [26]. For this body, the

metric coefficients can be obtained exactly, and the velocity components can be obtained

analytically for the incompressible flow [10]:

h, = _ 1+ (X/a- 1)'(t' - 1)
t 1- (X/a- 1)'

h, = tx/1 - (Z/a- 1)'

1/2

_,,= voo(VoCt)cos_cos _- y_o(t)sin ,_sinZ cos ¢)

v, = Voo(Vgo(t)sin asin ¢)

(98.a)

(98.b)

(gS.c)

(gS.d)

where t = b/a. Here/3 is the angle between the line tangent to the ellipse and the positive

X axis; it is given by

cos _ = V/1 - (X/a - 1) 2 (99.a)

V/1 + (X/a- 1)2(t 2- 1)

<0 if X/a> 1, and 13 >0 if X/a < 1 (99.b)

The parameters Vo(t) and Vgo(t) are functions of t and are defined by

Vo(t) = (1 - t2)s/'

- t 2 - ½t'ln { x+(1-,_)_,'_1_(1_,2),/2 } (lO0.a)

2Vo(t)

V9o(t) - 2Vo(t)- 1
(lO0.b)

The skin friction coefficients (Cfzoo_ = v(au/a_), _ where a = 1) as a function1/2v_ v ,, '

of X at an angle of attack zero degrees (axisymmetric flow) are shown in Fig. 5. The

present numerical results were obtained using the following grid distributions: 40 steps of

Ax=0.001 near the nose followed by Ax=0.02 downstream, and 41 grid points of A f=0.2.

The present results are in very good agreement with the results of Hirsh and Cebeci.
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However, the results of Wang are considerablydifferent (higher) from the present results

and also from the results of Hirsh and Cebeci.

Table 2 showsthe presentresultsof the streamwisewall shearvalues, (F¢)_, at an angle

of attack 6 degreesat X -- 0.5(m). The present results were obtained using Ax=0.001

for 40 steps near the nose, 0.02 downstream, Ay = _r/36(krnax = 37), and A_=0.2. The

present results and the Box scheme results computed by Cebeci and Su [26] are compared

in Table 2. The results obtained by Cebeci and Su are multiplied by (u_/Voo) -3/_ to cor-

rectly account for the different definition of f' and transformation. The difference between

using Box scheme and Characteristic Box is within 0.6 percent for Ax -- 0.025. The dif-

ference between the present result and the standard Box scheme is also within 0.6 percent.

Table 2. Comparison of the values of f_ at X = 0.5(m), a = 6 °

¢(degree) Standard Box [26] Characteristic Box [26] Present

0 0.6735 0.6735 0.6701

20 0.6665 0.6676 0.6626

40 0.6443 0.6461 0.6410

60 0.6090 0.6115 0.6064

80 0.5630 0.5660 0.5613

100 0.5103 0.5134 0.5096

120 0.4569 0.4597 0.4570

140 0.4116 0.4138 0.4121

145 0.4047 0.4050 0.4032

150 0.3952 0.3969 0.3956

155 0.3908 0.3909 0.3893

160 0.3837 0.3852 0.3843

180 0.3773 0.3773 0.3766
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5.2.4 Efficiency

Matsuno's finite-difference method is fast and efficient compared with other current

methods. The efficiency and speed of the Box scheme and Matsuno's scheme can be

directly compared. The Box scheme uses the block elimination method to solve the 6x6

block tridiagonal system obtained from the momentum equations. The energy equation

becomes a 2x2 block tridiagonal system when using the Box scheme. For Matsuno's scheme,

the momentum equations yield a 2x2 block tridiagonal system which can be efficiently

solved using the Davis Modified Tridiagonal Algorithm, and the energy equation becomes

a linear tridiagonal matrix form which can be solved by the Thomas algorithm. Another

CPU advantage is that Matsuno's finite-difference method is noniterative ( being only

a predictor-corrector procedure) compared with the Box scheme, which is an iterative

method because of the linearization. Although Matsuno's finite-difference method requires

smaller stepsizes (Ax) near the stagnation point where the velocity gradients are high

(which will be discussed in detail in Section 6.4), the computation time required to advance

the solution to a given x station using Matsuno's finite-difference method is substantially

less than that required for the Box scheme.

Matsuno's finite-difference method is also highly vectorizable [16] compared with other

schemes. The comparison of the CPU time between Matsuno's and Box scheme can be

found in Ref. [16]. According to this comparison, Matsuno's scheme operating in the vec-

tor mode requires approximately 1/50 of the CPU time required by the Box scheme to

calculate the same number of grid points. For the cases presented in the present paper the

CPU time per grid point was approximately 8x10 -5 second on the CRAY-2 ( 8 seconds for

l10x31x31 grid ).

5.3 Modification of Matsuno's Finite Difference Method

Matsuno's finite-difference method uses explicit central differences for the crosswise

derivative terms (0/0y). Therefore if the solution at one of the side boundaries does not
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exist then grid points are dropped as the solution is marched in x. In this case, two grid

points are dropped (one at the predictor and the other at the corrector) for each step in the

x direction (See Fig. 6(a)). Consequently, without modification, the Matsuno procedure

can obtain the solution in only a small part of the whole flow field if the boundary-layer

solution does not exist at any Y grid point.

The modified Matsuno's finite-difference method uses second-order backward differ-

ences for the crosswise derivative terms at the side boundary when the solution at one

side (in the v-direction ) of the solution domain does not exist. The purpose of using

this method is to continue the solution downstream while minimizing the number of lost

solution stations in the x = cortst plane. This method can be used provided all the local

streamlines are in the positive v-direction, i.e., the zone of dependence principle is satis-

fied. When using this procedure, the boundary-layer solution can be obtained as far as

the boundary-layer assumption is valid (see Fig. 6(b)). This procedure can be used even

when the open type of separation occurs off the planes of symmetry.

Figure 7 shows the difference molecule for the modified Matsuno's finite-difference

method. The modified finite-difference molecule is used only for the side boundary grid

point. As shown in Fig. 6(b), the standard Matsuno's finite-difference molecule is used for

all interior points.

The hypersonic flow over a cone with half cone angle of 10 degrees at 4 degrees angle

of attack was chosen to validate the modified Matsuno method. The boundary-layer so-

lution on the leeward line of symmetry (¢ = n) does not exist for these test conditions;

consequently the modified Matsuno's molecule will be used for Y = y,,_az.

The flow conditions are the same as Tracy's [27]:

M_ = 7.95

Tt_ = 755.4°K

Ptoo = 1. 7878x108 N/m=

T,,,/Ttoo = 0.41

32



The inviscid solution was obtained using the Euler code developed by Manuel D. Salas

(unpublished work) at the NASA Langley Research Center. The initial boundary-layer

solution near the nose tip (X = 0.02rn) from the windward line of symmetry to near

the leeward line of symmetry was obtained using Blottner's iterative method (Section

5.1). Using these initial velocity and temperature profiles, the calculation was continued

140 steps downstream to X = 2.39 m using the modified Matsuno procedure on the side

boundary. This calculation was done using the body-oriented coordinate system. The step

size (Ax) was small ( around 0.0007) near the nose tip, due to the zone of dependence

requirements, and increased as the solution proceeded downstream to a maximum value

0.2. The number of grid points in the y and _" directions are 31 (Ay = _r/30), and 41

(with A_" = 0.2), respectively. The heat transfer ratio at the initial (I = 1, X = 0.02m)

and final (I = 140, X = 2.39m) solution stations is presented in Fig. 8. The initial heat

transfer at I = 1 ( X = 0.02 rn ) is plotted as a line in Fig. 8; the heat transfer at I = 140

(X = 2.39rn) is plotted as circles. The numerical results by Boericke [29], who obtained

the similarity solution using Blottner's iterative method based on the inviscid solution from

Moretti [30], are also compared. The numerical results agree very well with each other as

well as with the experimental data obtained by Tracy [27]. Consequently, the modified

Matsuno procedure can be used to obtain accurate downstream solutions for those cases

where the boundary-layer solution does not exist for a side boundary.
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6. RESULTS AND DISCUSSION

6.1 Solution Procedure

The present method can be applied to any general fuselage-like configuration for com-

pressible, perfect-gas flow. The calculations can be made for either body-oriented or

streamline coordinates. A schematic flow chart of the procedure is presented in Fig. 9.

Two geometry programs have been used for modeling the bodies studied in the present

report: (1) the QUICK geometry program [31] and (2) the semi-analytic geometry program

developed by Barger and Adams [32]. The QUICK geometry program was to used for the

ellipsoid of revolution. Using the QUICK geometry program for a simple body, like an

ellipsoid of revolution, is exact since it uses analytic functions for the arc and bodyline

modeling. For the fuselage which was chosen for a test case, the semi-analytic geometry

program developed by Barger and Adams [32] was used. For this nonanalytic body, the

QUICK geometry program was not used due to the time it would have required to setup

for the geometric model. The semi-analytic geometry program [32] was found to yield

accurate and smooth modeling for the fuselage.

The inviscid solutions used are (1) an analytic potential solution, (2) Euler code, and

(3) the potential code developed by Hess [33]. Analytic potential solutions have been used

for the incompressible flow over a flat plate with an attached cylinder and for the ellipsoid

of revolution. In these cases, the analytically obtained inviscid solution and the metric

coefficients can be given directly to the boundary-layer code. The analytical inviscid

solution was used to investigate the accuracy of the finite-difference method in Section

5.2.3. For the inviscid solution on the cone, Euler code developed by Manuel D. Salas

(unpublished work) at the NASA Langley Research Center was used. The potential flow

code developed by Hess I331 was used to obtain the inviscid flow field over the ellipsoid of

revolution and the fuselage.

A typical inviscid grid on the fuselage is shown in Figure 10. For the present study,

most of the inviscid solutions from the Hess code were obtained using 54 grid points in
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the X-direction and 37 grid points in the b-direction. The Hess code gives the inviscid

Cartesian velocity components and pressure coefficients at the centroids of each panel. A

major problem with the panel method is the loss of accuracy in the nose region because of

the singularity on the axis as X --. 0. Consequently, the boundary-layer calculations must

be started slightly downstream from X = 0.

Two computer programs were developed to calculate the boundary-layer coordinates

(body-oriented and streamline ). These programs read the Cartesian inviscid velocity

components and the pressure coefficients on the inviscid grid. Given x and y distribution,

boundary-layer grid of the body surface is calculated using the method presented in Ap-

pendix D.1 (for the body-oriented coordinate system) or Appendix D.2 (for the streamline

coordinate system). These programs calculate the following on the boundary-layer grid:

ue, v,, s, cos O, hz, h2, Cp. The velocity components, cos 0, and the pressure coefficients are

interpolated from the inviscid grid onto the boundary-layer grid using bidirectional cubic

splines with tension interpolation subroutine.

For subsonic flows, the pressure on the body surface is not required as input because it

can be calculated using the velocity components and the isentropic relationship with the

freestream. When the pressure coefficients are not given on the boundary-layer grid for the

subsonic flow, the three-dimensional boundary-layer code calculates the pressure using the

isentropic relationship (see Appendix D.3 for detail). However, for the supersonic flows,

the pressure coefficients on the boundary-layer grid must be specified because the pressure

on the body surface is not related isentropicly to the undisturbed free stream.

The boundary-layer calculation starts near the stagnation point or near the nose tip

for the fuselage with the initial velocity and temperature profiles. The initial profiles

are obtained at i = 1, and the boundary-layer calculation starts from i = 2 (See Fig.

11). Each step (predictor or corrector step), the initial calculation starts at the windward

line of symmetry (j = 1); the unknown points off the line of symmetry are solved for

increasing values of j (j = 2,3, ..,jmax - 1); then the solution at the leeward line of
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symmetry (j = jrnax) is obtained. The present finite-difference method uses explicit

central differences for the v-derivative terms. Consequently, the procedure does not sweep

in the v-direction, as is required for most other procedures. Therefore, identical numerical

results are obtained if the procedure is reversed, i.e., start at the leeward line of symmetry

(j = jmax) and solve for decreasing values of j (j = jmax - l,jmax - 2,..,3,2) and then

the windward line of symmetry (j = 1).

The procedure described above is based on the assumption that the boundary-layer

solutions on the whole surface (up to the leeward line of symmetry) exist. This assumption

is generally valid before the separation line (closed or open type of separation) for a blunted

nose fuselage.

For a sharp nose fuselage, the initial solution near the nose tip (i = 1) is obtained

using Blottner's procedure [15] as far in the direction toward the leeward line of symmetry

(j = 1, 2, ..) as the solution can be obtained. If the boundary-layer solution on the leeward

line of symmetry exists, then the solution procedure for the sharp nose fuselage is the

same as for the blunted nose fuselage. However, if the boundary-layer solution near the

leeward line of symmetry does not exist, the modified Matsuno's finite-difference method

introduced in the Section.5.3 is used for the last point where the boundary-layer solution

exists.

In the present method, the coefficients, ml,rn2, ..,mls, are determined numerically

from the given velocity components (ue, re), s, cos 8, and the metric coefficients (hi, h2).

The coefficients, ml,m2,..,m13, are evaluated at the mid point (Xi+l/2) except for the

crosswise(y-) derivative terms, which are evaluated at the corrector step (x_+l). For ex-

ample, (1/hl)(Ou_/i)x) is obtained using central differencing at the mid point (X,+l/2),

i.e.,

1 i)u_ ,.. c3u_ It/+1 i-- U e

-- (101)
hi Ox v3s 3i-1-1 -- 3i

Similar derivatives, such as (1/hl)(Ov,/Ox), (1/hl)(i)h_ cos O/Ox) are obtained in the same

way as the above. However, the crosswise(y-) derivative terms, such as c3u,/ay, Ov,/Oy,
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Ohl/Oy, are obtained at the corrector step (Xi+l) assuming nonuniform spacing in the

(z_y;_l/Z_ys)C_,,j+l-_ej) + (z_ys/z_yS+l)C_e,s- _,;-1)
ay Ay_ + Ayi-1

(102)

The nonderivative properties, u_, v_, s, hi, h2, p, and # are averaged from the values at

{-thand i + 1-th step.

6.2 Boundary-layer Parameters

The skin friction coefficients are defined and calculated from:

(_Ou/Oz),, 21_u,(OF/Of)w(p/pe),_(p,ue/izes)'/2 (103.a)
CIz -- 1 2 --

(lzcgv/Oz)w 2#wVoo(OG/af)w(P/Pe)w(PeUe/Izes) Ua (103.b)
Cfy -- 1 2 --

_p_V_ p_V_2

To compare the skin friction coefficients with the results obtained by other investigators,

another definition of the skin friction coefficients is sometimes needed. The following

definition is used for the incompressible flow over the ellipsoid of revolution:

(lzcgu/cgz)w 2#wue(cgF/cgf)w(P/Pe)w(PeUe/#_s) 1/2 (104.a)
Cfzoo = 1 2 --_pooV_ poov_

(_Ov/Oz),_ 2_,Woo(Oa/O¢),_(p/p_),_(p_u,/_s)'/2
Cfy_ -- 1 2 --_p_V_ pooV_ (104.b)

where (OF/i)f)_, and (OG/O_),o are evaluated by second order one-sided differences at the

wall, i.e.,

OF w (/_1 2v/_'2)2F2 - (/_'I)2F3 (105.a)

(_) = ,_I(A_I -_- A_'2)2- (/_'1 Jr- A_'2)(/_l) 2

cgG (A_I + Af2)2G2 - (Afl)2G3 (105.b)
(-_-)_ : Z_l(Z_l + _¢_)*- (A_I+ z_)(_)2

The skin friction coefficients presented in the present report are referenced to the body-

oriented coordinate system. Results obtained in the streamline coordinate system have
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beentransformed to the body-oriented coordinate system as follows:

(Of,), = (C_, + C2,_) 1/2,t{cos(_ + _) - sin(fl + _) cot0}

_.2 _1/2 sin(fl + 7) csc

(106.a)

(106.b)

where fl -- tan-*(glv/Clz),, and _/ is the angle between the streamline coordinate line

(y = const) and the body-oriented coordinate line (y = const).

Displacement thickness as presented in the present paper was not obtained from the

displacement surface equation but, instead, from the following definition:

_*:J_o °°(1 pevePV)dz:J_o_{1-(P)[(ueF)2+(V°°G)2A-2ueV°°FGc°sO]I/2}dzve (107)

Heat transfer is calculated from:

OT %#,_ P PeUe I/2 cOT
q,. = K(-_y)_O- Pr (_)_(_-_-) (O-_') (108)

where (cOT/cO¢)w is obtained from:

cOT _ : [(A_'l)2 -- (A_'I -_- A_'2)2]T1 -{- (A_I _- A_'2)2T2 -- (A_'l)2T3 (109)
(-_-) A_.I(A_ 1 -3t- A_'2)2- (A_I -_- A_2)(A_I) 2

Along the lines of symmetry, CI. , Cly , 6", and q_ are obtained by substituting G = 0

in the equations above.

6.3 Test Cases

6.3.1 Hypersonic Cone With Mass Transfer

The hypersonic flow over the sharp cone at 0 degrees angle of attack with mass transfer

at the wall was selected as a test case with the following flow conditions (This flow condition

is the same as that used in Ref. [8] and [28]):

M_¢ : 7.4

8o = 5°

ol:O °
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Pto¢ = 4.14x106 N/rn2

Tt_¢ -- 833°K

T_ -- 316.65 °

From X = 0 to X = 0.096 m, there is no mass transfer at the wall. From X = 0.096 rn,

three types of mass transfer exist: (pw)_ = 0; (pw),_ = -0.090117 N sec/rn 3 (wall suction};

and (pw),_ - -0.090117 N sec/rn s (wall injection).

The inviscid solution was obtained using the Euler code developed by M. D. Salas.

(unpublished) Figure 12 shows the skin friction coefficients on the cone with the mass

transfer conditions listed above. These results were obtained using uniform grid spacing

in the normal direction with Af = 0.2. From X : 0.096 to X = 0.1, very small stepsizes

(Ax ----0.0002} were used to obtain a smooth skin friction coefficient when there is a mass

transfer. The results are in good agreement with the other results [8] (not shown}. Inci-

dently, the solution obtained using a nonuniform (stretched) grid spacing in the normal

direction (A_(1) :- 0.01, A_(j + 1)/A_(j) = 1.05, j= 1,2,..,jmax-1) is also presented as

small circles in Fig. 12. This result is in good agreement with the result using the uniform

grid spacing in the _-direction (solid line}.

6.3.2 Supersonic Cone

The supersonic flow over the sharp cone with a half cone angle of 5 degrees at an angle

of attack 2.25 degrees was selected as a test case with the following flow conditions:

Moo : 3.5

0c = 5 °

a : 2.25 °

ptc¢ : 3.6x103 lbf /ft 2

Tt_ : 540°R

T =Ta 

The inviscid solution was obtained using the Euler code developed by M. D. Salas. The
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initial boundary-layer solutions near the nose tip (X = 0.02 ft) from the windward line

of symmetry to near the leeward line of symmetry are obtained using Blottner's iterative

method (Section 5.1). The step size (Ax) is small ( around 0.0005) near the nose tip because

of the zone of dependence requirements and was increased downstream. The number of grid

points in the y and _"directions are 31 (Ay = _r/30) and 41 (with Af = 0.2), respectively.

The skin friction coefficients at X = 0.124,0.208,0.348, and 0.582 ft are plotted in

Fig. 13. At this angle of attack, the boundary-layer solution along the leeward line of

symmetry does not exist. However, using the modified procedure presented in section

5.3, the solution could be obtained downstream. The boundary-layer thickness and the

displacement thickness at the same locations are plotted in Figs. 14 and 15, respectively.

The streamwise and crosswise velocity and the temperature profiles at X = 0.582 ft are

plotted in Figs. 16 through 18.

6.3.3 Ellipsoid of Revolution

An ellipsoid of revolution having a four to one ratio of major to minor axis (a = lm,

b = 1/4m) was selected as a test case, and the boundary-layer solutions were obtained

for incompressible flow at a = 6 °. This particular case was selected because (1) its geom-

etry is analytic, (2) an exact potential solution exists for the inviscid flow field, and (3)

numerical results have been previously published (Reference [34]). Two approaches were

taken for each of the coordinate systems: (1) analytic grid generation, analytic metrics,

and the analytical inviscid potential solution ;(2) numerical grid generation, numerically

calculated metrics, and the inviscid flow field from the panel method of Reference [33]. The

axisymmetric analogue [35] was also used to obtain approximate results for comparison.

Skin friction coefficients (here, C/xoo Rv/-R--e-_= _(0_/0x)_ _ where a = 1) and the1/2v£ V -Y-"

displacement thickness results for Voo = lrn/sec are presented in Figures 19 and 20, re-

spectively. The skin friction results presented in Figure 19 are in the body-oriented coor-

dinate system; i.e., results obtained in the streamline coordinate system were transformed
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to body-oriented coordinate systemusing Eq. (105) . When the exact metrics and inviscid

potential solutions were used,the differencebetween the results obtained using the body-

oriented and streamline coordinate systemswas less than 0.25 percent. The agreement

between the numerical results obtained using the exact inviscid potential solution and

analytic geometry and the more general numerical approach, i.e., numerically generated

inviscid solution and coordinate system, is excellent for both boundary-layer coordinate

systems. In addition, comparisonsare made with the results presentedin Reference [34].

The axisymmetric analogueresults have the correct trend as compared with the three-

dimensional results, except near the three-dimensional separation line, and are generally

within +5 percent of the three-dimensional values away from the separation line. At this

angle of attack, the three-dimensional separation line begins approximately at X -- 1.32 rn,

¢ = 110 ° (See Cebeci and Su [26]).

6.3.4 General Aviation Fuselage

A low speed, general aviation aircraft fuselage was selected as a test case with nonana-

lytic geometry. The particular configuration has served as a flight test vehicle for transition

prediction procedures (see Refs. [36] and [37].). This case is particularly interesting in

that the crossflowis into the plane of symmetry: v_ < 0 as ¢--_ 0 , v_ > 0 as ¢ _ _r.

Consequently, standard marching procedures can not be used to advance from the solution

obtained on either line of the symmetry plane (¢ = 0, ¢ = r) into the three-dimensional

region (0 < ¢ < It), because any attempt to do so would violate the zone of dependence

principle.

Numerical results were obtained for a Mach number and unit Reynolds number of 0.3

and 7x106 m -i, respectively for 0 ° and 3 ° angles of attack for an adiabatic wall. A photo-

graph of the aircraft is presented in Fig. 4 of Reference [36]. A typical panel distribution

used to obtain the inviscid solution is presented in Figure 10. The boundary-layer grid for

the body-oriented coordinate system is shown in Figure 21, and two boundary-layer grids
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for the streamline coordinates (31 streamlines) are shown in Figure 22.

(1) Zero Degrees Angle of Attack

A side view of the fuselage forebody is presented in Figure 23 showing the maximum

pressure line and the crossflow velocity regions. As previously discussed, because the lines

of symmetry (¢ = 0, and ¢ -- r) are inflow lines, standard marching procedures can

not be used to advance the solution from the lines of symmetry into the interior region

(x = const;j = 2, 3, ..,jrnax- 1). However, Matsuno's method is independent of the sign

of the crossflow velocity and can be used.

Numerical results are presented in Figure 24 through 26 for a = 0 °. The agreement

between the skin friction coefficients obtained in the two coordinate systems is excellent

over the entire surface and the difference is within or/e percent. The axisymmetric analogue

results have the same general trend as the three-dimensional boundary-layer results, except

that they yield larger values of C/z near the plane of symmetry and fail to predict the C/z

trend along the side of the fuselage (¢ _ _r/2).

Boundary-layer thickness and displacement thickness results exhibit similar trends in

agreement between the results obtained in the two coordinate system and the axisymmet-

ric analogue.

(2) Three Degrees Angle of Attack

At this angle of attack, the flow field has two relative maxima pressure lines for 0 _<

¢ _< _r with multiple changes in the sign of the crossflow velocity (see Figure 27.). Figure

28 shows the values of ve/Voo as a function of ¢ from the inviscid solution at X = 0.6, 0.9,

1.2, and 1.5. The sign of ve changes three times as ¢ increases from 0 to 7r at X = 1.5.

Numerical results for a -- 3 ° are presented in Figures 29 through 35. Example streamwise

and crossflow velocity profiles are presented in Figs. 29 and 30. Temperature profiles are

presented in Figure 31.

Skin friction coefficients, boundary-layer thickness, and the displacement thickness re-
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sults are presented in Figures 32 through 34, respectively. The agreement between the

numerical results in the body-oriented and the streamline coordinate system is excellent

over the entire surface. The axisymmetric analogueresults are not acceptableat this an-

gle of attack in that they are in error in both magnitude and trend. For example, the

axisymmetric analogue results for CIz are on the order of 10 percent greater than the

three-dimensional values as the windward plane of symmetry is approached and fail to

predict the Clz trend for ¢ _ _r/2.

Three-dimensional results for the velocity profiles in the streamline direction are com-

pared with the axisymmetric analogue results in Figure 35 for X _ 1.3m. The axisymmet-

ric analogue results yield larger values of c_(u/ue),o/Oz than the three-dimensional results

as well as larger values of u/ue across the boundary layer at these points.

During the fuselage study questions were raised concerning the behavior of the numer-

ical results in the neighborhood of the plane of symmetry. It can be seen that the results

from the streamline coordinate system were not smooth; i.e., slight oscillations occured

near the plane of symmetry. The streamline coordinate system using 31 streamlines for

the fuselage is presented in Figure 22. The streamlines are initially uniformly distributed

in the crossflow plane at the initial station (x _ 0); however, they tend to converge to-

ward the symmetry lines (¢ = 0;¢ = _r) as x increases. Consequently, as x increases,

the streamline distribution becomes highly nonuniform with a dense packing of the grid

lines in the neighborhood of the symmetry lines and a sparse distribution in the region

r/3 < ¢ < 5_r/6. Using this streamline distribution it was not possible to obtain the

correct skin friction coefficient behavior numerically near ¢ = r/2. This problem was

not present in the body-oriented coordinate system, because the boundary-layer grid re-

mained nearly uniform for each x location. In order to obtain the correct behavior of the

boundary-layer in the ¢ _ _r/2 region it was necessary to use 91 streamlines. Although

the use of 91 streamlines corrected the problem in the region of ¢ _ _r/2, it created a new

problem, oscillatory values of the boundary-layer parameters, in the neighborhood of the
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symmetry lines. This was found to be caused by the combined effect of grid density and

the oscillation of the metric coefficient, h_, in the y-direction. Using 31 streamlines, this

oscillation was not present.

The term OK1/Oy assumes a dominant role along the symmetry lines. The term is

directly proportional to 02ue/Oy 2 because the metric coefficient, hi, is defined by Eq. (23)

for the streamline coordinate system. The inviscid results are first obtained at the cen-

troids of the panels. Using this relatively coarse distribution of centroids, it is difficult

to obtain accurate values of a2ue/Oy 2 on the densely packed boundary-layer grid because

Ou_/Oy is zero at ¢ = 0 and ¢ = r. Special attention must be paid to this term when

using the streamline coordinates and when the grid points are concentrated near the lines

of symmetry.

6.4 Restricton on Grids

The present method is developed in such a way that one can use nonuniform grid

spacing in the streamwise ix), crosswise (y), and in the normal (_) direction. The grid

spacing in the x-direction near the stagnation point where the velocity gradients are large,

has to be small not to yield oscillatory boundary-layer parameters. Figure 36 shows the

computed skin friction coefficient variation with X for the incompressible flow over the

ellipsoid of revolution Ca = 1 m, b = 1/4 rn) at zero degrees angle of attack. The analytic

inviscid solution as given in Section 5.2.3 is used to obtain the results. Step size (/Xx) values

of 0.001, 0.002, and 0.005 were used for the first 40 steps; thereafter, Ax was set to 0.02.

As can be seen in this figure, the computed skin friction coefficient near the stagnation

point oscillates increasingly about the correct solution as the step size is increased. In this

figure, the correct solution can be assumed to be the solution of using Ax of 0.001 near

the stagnation point (solid line). It is also apparent that once the solution approaches the

correct solution the oscilation vanishes even with abrupt increase in Ax to 0.02.

The zone of dependence principle requirement (Eq.(96)) also restricts _x. Because
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the coordinates are calculated prior to the boundary-layer calculation (see Fig. 9), the

stepsizes are determined before the stability condition is checked. The stability is checked

as the boundary-layer solution is obtained, and the calculation is continued as far as the

stability condition is satisfied and is stopped when it is violated. Therefore, when the zone

of dependence principle is violated with the present Ax distribution, the stepsizes after

that point must be obtained by a trial-and-error method. However, the step where the

stability condition is violated must be very close to the separation line because the wall

limiting streamline changes its direction very rapidly near the three-dimensional separation

line. It is to be noted that the stepsize near the nose is severely restricted because of the

zone of dependence principle.

The grid distribution in the _ direction used to obtain most of the results presented was

uniform (for most cases, A_=0.2). However, a nonuniform grid spacing in the _" direction

can be used as well. The boundary-layer grid in the y direction can be given arbitrarily.

However, the grid points in the y direction used in this study are uniformly distributed

(Ay = _r/(kmax- 1)) regardless of the coordinate system used (body-oriented or streamline

coordinates). The actual distance between two grid points with the same x is h2Ay. In the

streamline coordinates, y remains the same along each streamline; therefore, Ay between

two streamlines remains the same even downstream. The metric coefficient, h2, is a direct

function of the streamline divergence and varies over a large range as x increases in the

streamline coordinate system. Nonuniform spacing downstream on the general fuselage

when using the streamline coordinates is due to the variation of metric coefficient h2, not

because of the nonuniform distribution of Ay.
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7. CONCLUDING REMARKS

The three-dimensional, compressible,laminar boundary-layer equationshave beennu-

merically solved for several configurations at angle of attack. The finite-difference pro-

cedure used to solve the governingequations is secondorder accurate. The procedure is

independentof the sign of the crossflowvelocity componentand is the best method known

for configurations having crossflowreversal regions. The crossflowvelocity direction for a

general aviation fuselagewas into the plane of symmetry on both the most windward and

leeward surfacesfor the anglesof attack considered(0° and 3°). Consequently, standard

solution procedures, which march around the body using the plane of symmetry as an

initial data plane, could not be used to solve this fuselage test case. However, no numer-

ical problems were encountered using the finite-difference procedure used in the present

analysis. This was true even at three degrees angle of attack, where the crossflow veloc-

ity component reversed direction as many as three times in the region bounded by the

windward and leeward symmetry planes.

Numerical solutions for the fuselage-type configurations were obtained using two boundary-

layer coordinate systems: (1) a body-oriented coordinate system and (2) a streamline co-

ordinate system. The agreement between the boundary-layer parameters obtained in the

two coordinate systems was excellent over the entire fuselage surface. The boundary-layer

grid (body-oriented or streamline) can be totally independent of the inviscid grid, i.e., the

number of grid points in the x and y direction of the boundary-layer grid do not have to

be the same as those of the grid used to obtain the inviscid solution.

Based on the experience of using the two different coordinate systems on a general

fuselage, the following conclusions can be made: (1)the generation of the streamline coor-

dinates requires more effort than the body-oriented coordinates; (2) it is difficult, if not

impossible, to control the boundary-layer grid distribution using the streamline coordi-

nates; (3) the numerical results obtained using the body-oriented coordinates with only 31

grid points in the y-direction are better than those using the streamline coordinates with
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91 streamlines. Therefore, the body-oriented coordinate system is generally better than

the streamline coordinate system for boundary-layer calculations on a general fuselage,

provided the geometry singularity at the nosepoint in the body-oriented cooedinatescan

be avoided. Note, however,that the streamlinecoordinate results areexcellentand may be

preferablewhen output alongstreamlinesis needed,as in transition prediction procedures.

Excellent agreementof the boundary-layer solutions usingtwo different coordinate sys-

tems strongly validates this boundary-layer method and the application software. This

boundary-layer method is robust, fast, and can be applied to any type of fuselage (either

with a blunted noseor sharp nose) which has a symmetry plane. However, further devel-

opment is needed to add additional capabilities, such as viscous-inviscid interaction, real

gas effects for hypersonic flows, and turbulence closure. A user's manual with a detailed

description of the computer programs and input is presented in Volume II.
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Appendix A. Block Tridiagonal Matrix Algorithm

The two vector equations to be solved are

A_k-I (Hk -_- Hk-1)
hk = hk-1 +

-AkHk-1 + BkHk - CkHk+l + akhL = Dk

(Al.a)

(Al.b)

where Ak, Bk, Ck, and ak are 2x2 matrices, Hk, hk, and Dk are vectors. These equations

are solved using the Davis Modified Tridiagonal Algorithm (See Appendix A). Introduce

Ek, ek and dL such that

HL = ELHL-1 + eLhL-1 + dk (A2)

where EL and eL are 2x2 matrices, dL is a vector.

Using Eq. (A2), Eq. (Al.b) becomes

-- ALHk-1 + BLHL - CLEL+IHk - CLeL+lhL -- CLdL+I + akhL : DL (A3)

Define

Then, Eq. (A3) may be written as

RL = aL -- Ckek..t-1

-- AkHL-1 + (BL -- CLEL+I)Hk + RLhk : DL + CLdL+I

Substituting Eq. (Al.a) into Eq. (AS) gives

(--AL + --
A_k-I

RL)HL-1 -{- (BL - CkEL+I +

(A4)

Next, define

(A5)

A_L-1RL)HL- + RLhL-_ - DL - CLdk+_ : 0 (h6)
2

Solving Eq. (A6) for HL,

pL = BL - CLEL+I -1- A_'L-1RL (A7)
2

HL = p-_I(AL -- AfL-1Rk)HL-1 - p-_lRkhj,_l 't- pkl(DL + CLdL+I)
2 (AS)
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Equating Eqs. (A2) and (AS) term by term yields

ek = -p-£1R_ (A9.a)

A_'k-1ek (A9.b)
Ek = p-_lAk +

dk = p-_l(Dk + Ckdk+l) (A9.c)

The boundary condition at the edge of the boundary-layer (k=kmax) is

Hkmaz = [
]

1.0

1.

This provides the conditions

1.0 ]

ek,naz = Ekmaz = 0 (AIO)

The parameters of Eq. (Ag) are first determined for decreasing values of k (kmax-1, kmax-

2,...,2) beginning at the edge of the boundary-layer. Then Eqs. (Al.b) and (A2) are solved

for increasing values of k (k=2,3,..., kmax) using the boundary conditions at the wall,

HI = hi = 0 (All)
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Appendix B. Initial Profiles Near Stagnation Piont

Here, to avoid confusion, the rectangular coordinates, which have their origin at the

stagnation point are described by x*, y*, and z* (See Figs. 37 and 38.) The corresponding

velocity components are u*, v*, w*, and the inviscid velocity components are u_, v_, w_,

respectively. The relations of this rectangular coordinate system (x*, y*, z*) with the

rectangular coordinate system (x', y', z') which has its origin at the body nose (X -- 0),

are

x* : cosO,(z'- z:)- sin0,(x' - x_,)

y, : yl

z*: -coso, Cx'- - sin0,Cz'- z:)

(Bl.a)

(Bl.b)

(B1.¢)

t and t xl z Iwhere 0r is the angle between the two coordinate systems, and x, z° are the and

coordinates of the stagnation point, respectively.

The stagnation point solutions are denoted with the subscript s, i.e.,

f_ = u*/u* (B2.a)

g_o= v*/v* (B2.b)

and are obtained using the Blottner's iterative method.

B.1 Body-Oriented Coordinates

The body-oriented coordinates (x,y) which have their origin at X = 0 and the rect-

angular coordinates (x*,y*) which have their origin at the stagnation point are shown in

Fig. 37(b). It is assumed that the stagnation point is very close to X = 0, which is true

for a small angle of attack regardless of the shape of the nose.

The inviscid velocity components ue and ve at a point P are

= * * sin y (B3.a)Ue --U e COS y + Ve

v, = u e smy + ve cos y (B3.b)
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The boundary-layer velocity componentsat the point P are

u = -u,f',cosy + v,g, siny

* I • * f
v = uef' _ smy + v,g, cos y

(B4.a)

(B4.b)

The initial velocity profiles (off the lines of symmetry) in the body-oriented coordinate

system are obtained from the following equations.

i, = ,_/,_ = -u;f; cosy + v;gisiny __
-u_ cos y + v_ sin y -Ax* cos y + By* sin y

g' = v/Voo = u;g siny + v;g'. cosy _- Ax* f_ sin y + By* g', cos y
voo voo

-Ax* f_ cos y + By*g', sin y
(BS.a)

(B5.b)

where A and B are velocity gradients at the stagnation point (defined in Eq. (69)) in the

f'= u/u_ = .f_ (B6)

x* and y* directions, respectively.

On the lines of symmetry,

Even though v is zero along the lines of symmetry, Ov/Oy is not zero and can be obtained

as follows (y* = sin y = 0):

g'= vu/Voo = _-_(Ax*f' siny + By*g' cosy)lVoo (B7)

(B8)

or

g' = vv/Voo = (Ax* f' cos y + B(Oy*/ay)g' cos y)/Voo

Note that

and

cos y = 1, i)y*/c3y = h2 along the windward line of symmetry (B9.a)

cosy = -1, c3y*/Oy = -h2 along the leeward line of symmetry (B9.b)

Finally,

g' = v_/yoo: (-Alx*tf: + Bh2ai)/Yoo (B10)
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B.2 Streamline Coordinates

The streamline coordinates (x, y) and the rectangular coordinates (x*, y*) which both

have their origins at the stagnation point are shown in Fig. 38.

The inviscid velocity u, at a point P is

* ° *

ue -----u, smf_ + v, cos_ (Bll)

The boundary-layer velocity components at point P are

* I * I

u = u,f. sine + v,g, cos

* I

v u,f; cos _ * '= - v, g, sin B

(B12.a)

(B12.b)

where _ is the angle between the streamline direction x and the y* direction and is given

by

tan 13- u_ _ Ax*
v* By*

Substituting fl into Eqs. (Bll) and (B12) gives

X*

C'y*
(B13)

I * * 2

f' = u/u, = fr + gs(By lAx )
1 + (BY*lAx') 2

go)( Y )
g'= vlV¢_ = (f_ - "'ABx* *"

voo((Ax')'+

(B14.a)

(B14.b)

On the lines of symmetry,

f'= ,,/,,, = f: (B15)

Along the lines of symmetry, Ov/Oy can be obtained from

Ov Ov Ox* Ov Oy*
- +

Oy Ox* Oy Oy* Oy
(B16)

Near the lines of symmetry the following relations are valid:

OX*
-- = h_ cos/3
Oy

Oy*
-- h2 sin/_

Oy

(B17.a)

(B17.b)
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Along the lines of symmetry, cos/3 = 0; consequently, the first term of the right hand

side of Eq. (B16) vanishes to yield

Ov _ h2sin_+(u*,f_ cosj3 - v*,gl, sinfl) (818)Oy

Expanding Eq. (B18) and substituting cosfl = 0, sin2_ = 1, Ov2/Oy* = B, v*_ = By* = O,

Ofl/Oy* = -C*/x*, and u_* = Ax* gives

g' = v /voo= - /)/yoo (819)

The total enthalpy profile at point P is given as the stagnation point total enthalphy

profile.

An additional factor that must be considered is the difference between _"in the stagna-

tion point and main coordinate systems (body-oriented or streamline coordinate systems).

This is because of the difference in definition of ue and s between the stagnation point

coordinates and the main coordinates. To have a desired q distribution for the main co-

ordinate system, interpolation could be used in obtaining the values at a corresponding

from the stagnation point solution. However, this procedure is not used in the present

computer program because the difference of u,/s is negligible when the angle of attack is

small, as considered in the present report.

The velocity gradients at the stagnation point (A, B) and the location of the stagnation

I !
point (x,, z0) and Or are calculated in the streamline coordinate program. To obtain good

approximate initial profiles near the stagnation point using this procedure, the velocity

gradients, location of the stagnation point, and Or must be obtained accurately. However,

the velocity gradients are difficult to calculate accurately, especially when using a numerical

inviscid solution, because the inviscid solution near the stagnation point changes rapidly.

Accuracy was tested for the ellipsoid of revolution on which these values can be obtained

exactly. These values could not be obtained accurately from the Hess panel method inviscid

solution. The inaccuracy was caused mainly by the singularity of this inviscid method near

X = 0. Thus the above procedure for calculating the initial profiles is used in the computer
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program for the case when these values can be obtained accurately.

However, when the angle of attack is small, as considered in the present study, the

ratio of the two velocity gradients (B/A = C*} is close to unity and the stagnation point

is close to X -- 0. We can use the axisymmetric stagnation point solution obtained by

using C* -- 1 when any of the velocity gradients, location of the stagnation point, or 0r is

not easy to obtain or is not sufficiently accurate. In this case, the initial profiles near the

stagnation point can be obtained easily. The difference of the boundary-layer solutions

between cases using different values of C* vanishes within 5 downstream steps.
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Appendix C. Initial Profiles Near NoseTip for Sharp Nose Body

The initial velocity and temperature profiles near the nosetip of the general sharp nose

body are obtained based on the body-oriented coordinate system. Consequently, if the

boundary-layer solution is sought using the body-oriented coordinates for the whole flow

field on the sharp nose body, the initial profiles are used as they are obtained at i = 1.

However, when the boundary-layer solution is to be obtained using the streamline coor-

dinate system, initial velocity profiles based on the streamline coordinate system must be

obtained, see Fig. 39. Assume the velocity profiles based on the body-oriented coordinates

near the nose tip (obtained using the Blottner's iterative method in the present report)

are given as:

f_= (ulu.)_

where subscript b denotes the body-oriented coordinates.

Then, from Fig. 39,

(Ca.b)

(CI.¢)

t,, = (_/_,),, = (v:_ + :)bcosZ

g:, = (,/voo),, = -(v:_ + ,2)_sin:
y_

(C2.d)

(C2.e)

where the subscript st denotes the streamline coordinates. Here, /3 is the angle between

the inviscid streamline and the local streamline and is given by

(_e + ,v,)_ (c3)
toss = (v:@_+ v_)_(_),

Substituting/3 into Eq. (C2) gives

2 t

(u_)bf_ -+-Voo(v_)_g_ (C4.g)
(_ + v_)_

, Voo(U,)bg_- (u,ve)bf[) (C4.h)
gst

Voo(V/-_,+:.)_
In deriving Eqs. (C2) through (C4), the body-oriented coordinates (x and y) near the nose

tip are assumed to be orthogonal.
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Appendix D. Boundary-Layer Edge Conditions

D.1 Body-Oriented Coordinates

The body-oriented coordinate system employed in the present report is constructed by

pure cross-sectional cuts. One coordinate is the line of intersection of the body surface and

a X = const plane, the other coordinate on the surface is the line of intersection of the

body-surface and a meridional plane (¢=const plane). This coordinate system (x and y)

is in general nonorthogonal for fuselage shapes. In these coordinates, x is measured along

the axis and has the same value as X. Also, y has the same value as ¢. However, the

directions of x and y are different from X and ¢, respectively. See Fig. 1 for the definitions

of this coordinate system. Figure 21 shows the body-oriented boundary-layer grid on the

fuselage shape studied in the present report.

The inviscid velocity components in the rectangular coordinates are given at the cen-

troid of panel P (Xp,¢p,rp) from the inviscid code; see Fig. 40. Using the geometry

program, the point Q (Xq, Cq, rq), which lies within a small distance (6X) from the point

P along x-direction, and the point R (Xr, Cr, rr), which lies with a small angle (6¢) from

the point P along the positive y-direction, can be obtained. Here, 6X and 6¢ can be

chosen arbitrarily small (typically 0.01).

Now, from the definition of the rectangular (x', y', z') and cylindrical (X, r, ¢) coordi-

hate systems,

f !

Xp = Xp yp -- rpsinCp z_ -- -rpsinCp (Dl.a)

! !

xq = Xq yq = rqsinCq z_ -_ -rqsinCq (DI.D)

' ' r_ sin ¢_ 'x_ = Xr yr = z_ -- -r_ sin ¢_ (Dl.c)

where Xq = Xp + 6X, Cq = Cp, X_ = Xp, and ¢_ = Cp + 6¢.

Then, cos 0 is calculated from the following equation:

cos 0 --
(x_- _;)(_.,- 4) + (y'.- yi)(y',- y;)+ (_ - _)(_', - _)

(D2)
t 2 i I 2x/(x_- 4)' + (y;- _1' + (z; - _;,)_/(x,- _1, + (y,- y_) + (_,- z_),
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The angle between the streamline with the x-direction can be obtained by:

(uz,IVoo)(X'q- x'_)+ (uv,/Voo)Cy'q- y'_)+ [uz,lV_)(z,_- g)
cos_= (v,/v_)_/Cx_- x_)2+ (y;_ y_)_+ (z;- _)_

(D3)

where V, is the inviscid total velocity, i.e.,

v, = _/_, + _;,+ _;, (D4)

The inviscid velocity components in the body-oriented coordinates on the centriods are

obtained from the equations below.

u./Voo = (V, IVo_) sin"l csc 8

v./Voo ---- -(V,/V¢_) sin _/cot 0 + (V_/Voo) cos _/

(D5.a)

(D5.b)

After the inviscid velocity components and cos 0 are obtained on the centroids of panels,

u, is extrapolated along the lines of symmetry. On these lines, cos 0 and v, are equated

to zero. The velocity components, pressure coefficients (which is not necessary for the

subsonic flow), and cos 0 on the boundary-layer grid are interpolated using the bidirectional

cubic spline with tension program. The first derivatives of the velocity components, such as

au,/ax, auo/ay, av,/ax, are smooth and continuous using this interpolation subroutine.

This subroutine must not be substituted by the Lagrangian interpolation subroutine.

The metric coefficients are calculated as below:

as as
hl -

Ox ax

/Ox, 2 (c3Y'.2 Oz, 2
h_=V(_) +,_ + (_)

(D6.a)

(D6.b)

where c3x'/cgy, cgy'/i)y, and Oz'/c3y are obtained by central differences.

For the case of the incompressible flow over the ellipsoid of revolution, the exact metrics

and the analytical inviscid solution can be obtained in a closed form; see Section 5.2.3.
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D.2 Streamline Coordinate System

To calculate the inviscid streamlines, the method developed by Hamilton et al. [38] is

used. In the present report, a spherical coordinate system (R, O, ¢) with the origin at

X -- Xo,p is employed (Fig. 41) for calculating the inviscid streamlines. The axial location

Xo,p can have arbitrary value, but Xo,p = 1.0 is used.

The velocity components in this spherical coordinate system can be obtained from the

velocity components in the rectangular coordinates (x _, y_, z _) by the following relationships.

_R/v_ = {(_'- Zo..)C_=,/v_)+ y'C_,/v_) + z'Cu.,/yoo)}/R

ue/Voo= {y'(x'- Xoop)(u_,/Voo)+ z'Cx'- Xo.p)Cu.,/Voo)-r2(uz,/Voo)}/rR

u_/Voo= {z'C_,/Voo)- y'(_.,/Voo)}/r

where

(D7.a)

(D7.b)

(D7.c)

r = 4y 12 + Z 12

R = VI(=' - Xo.p)'+ _'"+ z'_

(D8.a)

(DS.b)

Now, let

D 0
(D9)

be the derivative along an inviscid streamline on the surface.

Then, from Eq. (50) and Ref. [38],

Ds V¢¢
_:hl_--
Dx ue

DX _ cosO(,_RIV_)- si_0(_o IVy)
Dx (u_/V_) 2

De_ u_/V_
Dx r(u,/Voo) 2

(DlO.a)

(D10.b)

(D10.c)

To establish the initial location of streamlines for the blunt nosed body, locate O, (O at

the stagnation point) as the point where ¢ = 0 and ue -- 0. Then, draw a cone which has

an angle e with respect to the line connecting the stagnation point and the origin of the
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spherical coordinates; see Fig. 41 . The initial location of streamlines on the intersection

of the e cone and the body surface can be obtained from the following equations:

where

¢, = _r/2 +sin -1 { (e cos y cos O, - x/i--e_sinO,)/G1}

al ={( cosycoso.- ,5- sin0.)' +sin'  sin'y} J'

cos O_ = sin e cos ysin O_ + cos e cos O,

(Dll.a)

(Dll.b)

(Dll.c)

Equations (Dll) locate the coordinates (X_ and ¢_) for the initial position of streamlines

near the stagnation point.

It should be noted that the initial locations of streamlines obtained as described above

are not on the same x location, i.e., the initial x-direction and y-direction are not orthogonal

to each other. To generate the orthogonal streamline coordinates, the initial location of

streamlines has to be readjusted using integrations along the streamlines.

For the sharp nose fuselage, the initial locations of streamlines are at the same small

X. As for the blunted nose body, the initial locations of the streamlines ( i.e., on the same

X) are not on the same x. To generate the orthogonal streamline coordinates, the initial

locations of the streamlines have to be readjusted.

The inviscid total velocity (u,) and three velocity components (UR, u¢,, Uo) are calcu-

lated on the centroids of panels using Eq. (D7). The inviscid velocity components along

the lines of symmetry are then extrapolated using the appropriate condition along these

lines (u,,uR, uo; symmetry condition). The inviscid velocity components and the pres-

sure coefficients on the whole surface are obtained using the same interpolation program

(bidirectional cubic spline with tension ) as used for the body-oriented coordinates.

The fourth-order Runge-Kutta method is used to obtain the streamlines, i.e., to inte-

grate Eq. (D10). The metric coefficient, hi, is defined as Eq. (23) in this coordinates. The

metric coefficient, h2, is obtained in the same way as for the body-oriented coordinates,
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i.e.,

/ (ay,), (a,,.
h2 = V(--_y ) + Oy + -'_y): (D12)

D.3 Temperature and Pressure

For both body-oriented and streamline coordinate systems, the temperature at the edge

of the boundary-layer can be obtained using the total inviscid velocity, i.e.,

2] (D13)
v,

T,/Too = 1 + M_[1- (_--_)

Equation (D13) is derived from the inviscid energy equation and is valid for all speed

regimes. Temperature at the boundary-layer edge is calculated using the above equation

in the boundary-layer code. Therefore, temperature at the edge of the boundary-layer is

not a required input.

For subsonic, shock-free flow, the pressure can be obtained from the isentropic relation

with the free stream, i.e.,

P,/Poo = ( T" ) "/('_-1) (D14)
Too

Pressure at the edge of the boundary-layer is calculated using the above equation with Te

obtained from Eq. (D13) in the boundary-layer code. Consequently, pressure at the edge

of the boundary-layer is not a required input for subsonic flow. However, for supersonic

flow when there is a shock wave present between the body and the free stream the pressure

must be given as an input to the boundary-layer code, because the pressure on the body

surface can not be obtained using the isentropic relationship with the undisturbed free

stream.
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